

CHEMISTRY

ULTIMATE QUESTIONS GUIDE

Principal and sole tutor: Mr Shamik Amin

Qualified Teacher Status (QTS), PGCE (Distinction), BSc (Hons),

NVQ Speech and Language & Enhanced DBS checked.

07552 377 989 To purchase a plan please visit <u>https://www.adepttuition.com/plans-pricing</u>

Contents

Bonding, structure and properties of matter	Page 2
Atomic structure	Page 8
Quantitative chemistry	Page 17
Bonding, structure and properties of matter	Page 27
Chemical changes	Page 35
The periodic table	Page 39
Chemical changes	Page 48
Chemical analysis	Page 51
Organic chemistry	Page 53
Chemical changes	Page 58
Energy changes	Page 69
The rate and extent of chemical exchange	Page 74
Chemical changes	Page 78
Organic chemistry	Page 82
Using resources	Page 87

Particle Theory:

The theory states that in all substances the particles are There are three states of matter, solids, _____ and In solids the particles are _____about a fixed point. The forces between particles are_____. A solid can not be _____ easily because the particles are _____ _____. They have a fixed shape and______. In a liquid the particles are free to _____ over each other. The forces between particles are_____. A liquid can not be easily because the particles are _____ _____. They have a fixed _____ but their _____ changes depending upon the base of the container.

In a gas the particles are moving very_____and in _____ directions. The forces between particles are very_____. A gas can be squashed because there are large ______ between the particles. Both their ______ and shape vary depending upon the container. Draw the structures of a solid, liquid and gas in the boxes provided.

Other Properties:

1. Density

Solids and _____ have high densities because their particles are _____ packed. However, _____ have very low densities because their particles are_____out.

2. Pressure

Pressure is caused by gases, because their particles _____ with the side of the container. If the <u>volume</u> is <u>decreased</u> then the <u>pressure</u> will <u>increase</u> because the particles will collide ______. If the <u>temperature</u> is <u>increased</u> then the <u>pressure</u> will <u>increase</u> because the particles will collide more often and ______.

3. Diffusion

Diffusion is the movement of particles from a _____ concentration to a _____ concentration. _____ diffuse faster especially if they are_____. If the temperature is increased then diffusion will increase because the particles have more ______ Energy and are travelling faster.

<u>Changes of State (1):</u>

Match the following changes.

Solid to Liquid	Freezing
Liquid to Gas	Subliming
Gas to Liquid	Melting
Liquid to Solid	Boiling
Solid to Gas	Condensing

Changes of State (2):

1. Melting

When a solid is heated the particles gain more_____. This makes the particles_____faster. At a certain temperature (_____ Point) the particles are _____ fast enough to overcome the very _____ forces between the particles and are free to_____.

2. Boiling

When a liquid is heated the particles gain_____. Ifthey are travelling fast enough towards the______then they canescape or knock a surface particle into the_. If this happensnormally then it is known as______. However, at a certaintemperature (______Point) there is a mass______of particles.

For the reverse processes particles _____down as they lose _____ and will reform the strong _____between the particles.

When a gas ______ or a liquid ______ the temperature remains______ because energy is released as the ______ come together. When a solid ______ or a liquid _____ then the temperature remains ______ because all the _____ energy is required to _____ the bonds between the particles.

Exothermic:- when energy is _____to the surroundings.

Endothermic:- when energy is _____from the surroundings.

<u>Mixtures:</u>

Mixtures are two or more substances that are not _____

When two liquids dissolve they are said to be_____, however, if they form__ layers and do not dissolve then they are called_____.

An example of two liquids that do not mix are _____and water. If they were shaken together then you would see _____of _____ suspended in the water (_____). After a while they would separate out to form two_____.

If detergent was added to the mixture before it was shaken then the droplets would remain suspended for longer. In this case the detergent is acting as an_____.

Separating Mixtures:

1) Chromatography:

Used to separate mixtures of things with different

- i) Draw a line on the chromatography paper in _____.
- ii) _____ the dyes on the line.

iii) Pour water or another suitable _____ (e.g. ethanol) into a beaker ensuring the level is below the line.

- iv) Place the chromatography paper into the water.
- v) Allow to develop for five minutes or until the s____has nearly reached the top.

vi) Remove the paper and allow to d_____ before comparing the distance travelled by the dyes.

A chromatogram can be used to identify different substances because under the same conditions the same dyes will travel the same

d_____.

2) Distillation:

Distillation is used to separate a mixture that contains two or more substances that have different_____.

E.g. ethanol and _____.

Fractional distillation can be used to separate complex mixtures such as c_____o___.

3) Filtration and Evaporation (Crystallisation):

Some mixtures contain a soluble substance and an insoluble substance (e.g salt and sand). These mixtures can be separated by:

- i) Add the mixture to a suitable_____.
- ii) Stir the _____ until one substance has completely
- iii) _____ the mixture and leave the filter paper to dry (Sand).
- iv) Pour the _____into an evaporating basin and allow the solvent to _____(Salt).

<u>Atoms:</u>

Atoms have a small ce andand around w	ntral, whicl which there are	h is made up of
Name of Particle	Relative Mass	Relative Charge
The atom is mad N(which are four the central n	le up of three types of pa nd in the) ar 	rticle.P <u>a</u> nd nd E <u>w</u> hich
The Atomic (Pr atom which also happens to	roton Number) tells us the be the number of e	e numberof p in an
The Mass Num n Therefore to cal	nber tells us the total culate the number of n	I number of p and :
No. of Neutr	rons = Mass Number - Ato	omic Number
e.g. For Sodium:	NI 22	
Mass	1N0. = 23	
	IIC INU II	
Therefore No. of Neutrons	= 23-11	
	= 12	

Using your Periodic Table complete the following table.

Element	Atomic No.	Mass No.	Protons	Electrons	Neutrons
С	6				6
F			9		
Mg				12	
СІ		35			
Ca					20
U		238			

Isotopes are atoms of the same_____which have the same number of_____but different number of_____. The Relative _____ Mass must be calculated from the _____ and Relative Isotopic Mass of every isotope.

RAM = <u>Sum of (Isotopic Mass x % Abundance)</u>

100

Qu 1) For Boron there are two isotopes with their abundances in the brackets. Calculate the Relative Atomic Mass.

10.0 (18.7%) 11.0 (81.3%)

Electron Configuration:

The electrons orbit the nucleus. The electrons are arranged in shells that represent orbit of similar energy.

1st Shell: Max 2 electrons 2nd Shell: Max 8 electrons 3rd Shell: Max 8 electrons 4th Shell: The remainder if any

e.g. Sodium- 11 Electrons

1st Shell: 2	Therefore:
2 ^{n 1} Shell: 8	
3 rd Shell: 1	
2 ^{n I} Shell: 8 3 rd Shell: 2	

Overall: 2, 8, 1

Workout the electron configurations for the following elements:

- i) Carbon
- ii) Magnesium
- iii) Potassium

Electron Configurations can also be drawn:

e.g. Sodium

Draw electron configurations for the following:

i) Oxygen

ii) Chlorine

- iii) Calcium
- a) What is the relationship between the **group** number and the number of **outer electrons**.

<u>Atomic Mass:</u> Complete the following definitions.

Relative	Atomic	Mass	(A _r):	the <u></u>	mass	of	1	_of
atoms re	lative to	1/12 +}	ne mas	s of	1 mole carbon-12	2		

Relative Isotopic Mass: the mass of 1 _____ of an _____ relative to 1/12 the mass of 1 mole carbon-12 atom.

Relative Molecular Mass (M_r): the_____mass of 1 mole of compound relative to 1/12 the mass of 1 mole of_____-12 atoms. It is the sum of all the Relative _____ Masses of its constituent

The term Relative Formula Mass (M_r) is used for Ionic Compounds.

Molar Mass: is the _____ of one mole of the substance (gmol⁻¹)

<u>The Mole:</u>

This is the number of particles in 12g of Carbon-12. (Avogadro's number)

The number of particles is _____ and is called _____ Number.

The number of particles in any given substance can be calculated by:

No of Particles = No. of Moles x_____Number

Calculate the number of particles in the following:

- 1) 0.5 moles of magnesium
- 2) 0.1 moles of sulphur
- 3) 0.125 moles of oxygen

<u>Molar Gases</u>

One mole of any gas at room temperature and pressure occupies _____ cm³.

a) What volume would 0.1 moles of H₂ occupy?

- b) What volume would 10g of O₂ occupy?
- c) How many moles are there in 250 cm^3 of I_2 ?

Empirical and Molecular Formulae:

The Empirical Formula is the _____ ratio of elements in a compound:

The Molecular Formula is the _____ ratio of elements in a compound:

e.g. Benzene:

Molecular Formulae: C₆H₆ Empirical Formulae: CH

To calculate the Empirical Formula you either need the ______ reacted or the ______masses.

Follow the same steps every time to calculate the empirical formula.

- 1 Write down the mass of each element.
- 2 Divide the mass by the relative atomic mass of the element.
- ³ Divide numbers by the smallest number to get the ratio of elements.
- 4 These numbers give the empirical formula.

A compound has 24 g of carbon and 64 g of oxygen. What is its empirical formula?

Element Symbol	С	0
Mass of element	24	64
Mass ÷ Relative	÷ 12	÷ 16
Atomic Mass	2	4
Divide by the smaller number	÷2	÷ 2
Ratio	1	2

The empirical formula of this compound is CO2.

1. A compound is made from 72 g of carbon and 12 g of hydrogen. Work out its empirical formula.

2. A common salt is analysed and is found to have 52.9 g of sodium and 81.7 g of chlorine. What is its empirical formula?

3. Aluminium ore may consist of 156 g of aluminium and 278 g of oxygen. Is its empirical formula AIO_2 or AIO_3 ?

4. A commercial paint thinner has the following composition: carbon 25.2 g; hydrogen 8.5 g; oxygen 33.7 g. What is its empirical formula?

<u> Molecular Formulae:</u>

Once you have found the Empirical Forumla e.g CH_2 then you can find the Molecular Formula using the M_r of the compound.

Er is like Mr but for the Empirical Formula

 M_r / E_r - this should be a whole number

Molecular Formula = $M_r / E_r \times Empirical$ Formula

e.g. $42/14 \times CH_2 = C_3H_6$

1. a) Calculate the empirical formula of the compound found to contain 40.0% carbon, 6.7% hydrogen and 53.3% oxygen.

b) Find its molecular formula given that its M_r is 180.

- 2. a) Work out the molecular formula of the following compounds given the information below?
 - i) empirical formula = P_2O_5 $M_r = 284$
 - ii) empirical formula = CH_2 $M_r = 56$

Writing equations:

It is important when writing equations to do it methodically:

- 1. Write a word equation
- 2. Write the formulas for each of the species.
- 3. Balance the equation.

State symbols are used to show the state of matter of the reactants of products.

(s):-	\$
():-	I
(g):-	9
(aq):-	a

Write balanced equations for the following reactions:

- a) sodium + oxygen → sodium oxide
- b) aluminium + chlorine \rightarrow aluminium chloride
- c) Potassium reacting with water?

Concentration, Volume and Moles:

In solutions the number of moles is often quoted as the concentration either in mol/dm³ or M.

Number of moles = Concentration × Volume

$n = c \times v$

NB Volume is often quoted in cm³ and must first be changed into dm³ by dividing by 1000.

Calculate the following:

a) Number of moles in 2 dm³ of 0.05 mol dm⁻³ HCl

b) Concentration in 0.400 moles of HCl in 2.00 litres of solution

c) Volume of 0.00500 moles of NaOH from 0.100 mol dm-3 solution.

Reacting Masses Calculations:

In order to calculate the mass of a reactant needed or product formed, volumes of products or perhaps a titration calculation you might need more than one step.

The MRA approach:

1. Moles:

Calculate the initial number of moles of one of the species using either:

n=m/Mr (solids) n=c × v (solutions) Pv = nRT (gases)

2. **R**atio:

Calculate the number of moles of the other species using the ratio from the equation:

3. Answer:

Calculate your answer now that you have the number of moles of the species required.

The reaction below is known as the Thermitt reaction, which is used to form molten iron to mould train tracks together. What mass of aluminium powder is needed to react with 8.00 g of iron (III) oxide?

 $2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe$

25.0 cm³ of 0.0400 mol dm⁻³ sodium hydroxide solution reacted with 20.75 cm³ of sulphuric acid in a titration. Find the concentration of the sulphuric acid.

<u>Percentage Yield:</u>

% yield = mass of product obtained x 100

maximum theoretical mass of product

The theoretical maximum mass of product must first be calculated using the reacting masses method:

Titanium can be extracted from titanium chloride by the following reaction. TiCl₄ + 2 Mg \rightarrow Ti + 2 MgCl₂

a) Calculate the maximum theoretical mass of titanium that can be extracted from 100 g of titanium chloride .

b) In the reaction, only 20 g of titanium was made. Calculate the percentage yield.

Ionic Compounds:

Ions are	formed when at	oms either <u>g</u>	or	e
0	is the l	of e		
R	is the g	of e		

Using the following table of common elements and their charges to complete the following formulae:

Element	Charge	Element	Charge
Sodium (Na)	+1	Chloride (Cl)	-1
Potassium (K)	+1	Bromide (Br)	-1
Magnesium (Mg)	+2	Oxide (O)	-2
Calcium (Ca)	+2	Sulphide (S)	-2
Aluminium (Al)	+3	Nitride (N)	-3
Iron (II) (Fe)	+2	Nitrate (NO3)	-1
Iron (III) (Fe)	+3	Hydroxide (OH)	-1
Copper (II) (Cu)	+2	Carbonate (CO3)	-2
Zinc (Zn)	+2	Sulphate (SO4)	-2

- a) Sodium Bromide
- b) Aluminium Oxide
- c) Iron (III) Chloride
- d) Magnesium Nitride
- e) Copper (II) Sulphate
- f) Zinc Hydroxide

The electronic structure of the ions in sodium chloride can be represented by the following.

a) Draw a similar diagram to represent the ions in Calcium Chloride.

An <u>ionic compound</u> is a giant 3-d structure of ions (L_____). Ionic compounds are held together by strong e_____ forces of a_____between oppositely charged ions. Ionic compounds have regular structures (giant ionic l_____) in which there are strong e_____ forces in all directions between oppositely charged ions.

 a) Draw a diagram to show the arrangement of ions in sodium chloride.

These compounds have high m_____points and high b_____ points because of the large amounts of e_____needed to break the many s_____ bonds. The greater the c_____ on the ions the higher the m_____and b_____point. When m_____ or d_____ in water, ionic compounds conduct e______ because the i_____ are free to move and carry the current.

b) Why do ionic compounds not conduct when solid?

Covalent Compounds:

When atoms share pairs of electrons, they form c_____ bonds. These bonds between atoms are s_____. Some covalently bonded substances consist of simple molecules such as H_2 , Cl_2 , O_2 , HCl, H_2O , NH₃, CH₄, N₂, C₂H₆ and C₂H₄.

Substances that consist of simple molecules are gases, liquids or solids that have relatively low m____ points and b_____ points.

Substances that consist of simple molecules have only w____forces between the molecules (i_____ forces). It is these i_____forces that are overcome, **not** the c_____bonds, when the substance melts or boils.

a) Why does solid iodine sublime?

Substances that consist of simple molecules do not conduct e_____ because the molecules do not have an overall electric c_____. Molecules that contain covalent bonds can be represented using dotcross diagrams as shown here in ammonia.

a) Draw a dot-cross diagram for water?

b) Draw a dot-cross diagram for hydrogen chloride?

c) Draw a dot-cross diagram for oxygen?

d) Draw a dot-cross diagram for ethane?

e) Draw a dot-cross diagram for ethene?

diamond and silicon dioxide.

a) Why do diamond and graphite have very high boiling points?

In diamond, each carbon atom forms f covalent bonds with other carbon atoms in a giant covalent structure, so diamond is very h_____. This is why it is used in c______tools. In graphite, each carbon atom bonds to t_____others, forming I_____. The I_____are free to slide over each other because there are no covalent bonds between the layers and so graphite is s_____and slippery. This is why it is used as a l______. In graphite, one e_____from each carbon atom is d_____. These delocalised e_____ allow graphite to conduct h____ and e_____.

<u>Metals:</u>

The bonding in metals can be represented by:

- b) Describe the bonding in the following chemicals and explain which is likely to have to highest melting point.
 - i) Sodium and Sodium Chloride

ii) Iodine and silicon dioxide

iii) Water and Aluminium Oxide

<u>Electrolysis:</u>

When an ionic substance is m____or dissolved in w____, the ions are free to m____about within the liquid or solution.

Passing an electric c_____ through ionic substances that are m____, for example lead bromide, or in solution breaks them down into elements.

This process is called e_____ and the substance that is broken down is called the e_____.

During e_____, p____ charged ions move to the n_____ electrode, and n_____ charged ions move to the p_____electrode.

- a) During electrolysis of molten copper chloride what is produced at each electrode?
- b) During electrolysis of molten lead bromide what is produced at each electrode?

At the negative electrode, p_____charged ions gain electrons (r_____) and at the positive electrode, n_____ charged ions lose electrons (o_____).
Reactions at electrodes can be represented by half-equations for example:

c) Write half-equations for the reactions that took place in questions a) and b)

If there is a mixture of ions, the products formed depend on the reactivity of the elements involved.

In solutions the water provides H_____ (H+) and H_____(OH-) ions.

At the positive electrode H_____ is produced if the metal is more reactive then H_____.

At the negative electrode O_____ is produced if the non-metal ion is too complicated.

 d) During electrolysis of copper sulphate solution what is produced at each electrode? What remains in the solution? Write equations for any reactions that occur.

e) During electrolysis of dilute sulphuric acid solution what is produced at each electrode? What remains in the solution? Write equations for any reactions that occur.

<u>Calculating the mass of products from electrolysis:</u>

The mass of product deposited on an electrode can be calculated because 1 Faraday is 1 m_____of e_____

The first thing to do is to work out how many coulombs of electricity flowed during the electrolysis.

Number of coulombs = current in amps x time in seconds

Number of coulombs = $0.10 \times 10 \times 60 = 60$

Now look at the equation for the reaction at the cathode:

Ag+ + e- 🗕 Ag

Just as with any other calculation from an equation, write down the essential bits in words:

1 mol of electrons gives 1 mol of silver, Ag.

Now put the numbers in. 1 mol of electrons is 1 faraday.

96500 coulombs give 108 g of silver.

So, if 96500 coulombs give 108 g of silver, all you have to do is to work out what mass of silver would be produced by 60 coulombs.

Mass of silver = 60/96500 × 108 g = 0.067 g

The Periodic Table:

The Periodic Table is made up of vertical g_____ and horizontal p______. Metals are found on the l____and non-metals are found on the r_____. The classification of an element as either a metal or non-metal depends upon:

- i) The e______conductivity of the element. All metals are good c______ because of their delocalised e______. Non-metals are insulators because their shared e______. Non-metals are insulators because their to the rule is g______.
- ii) The acid-base nature of their oxides. Metals react with oxygen to form b_____oxides. Non-metals react with oxygen to form a_____oxides.
- a) Describe the reaction of sulphur with oxygen and write a balanced equation. What does sulphur dioxide cause?

b) Describe the reaction of magnesium with oxygen and write a balanced equation.

The reactions of elements are governed primarily by the number of e______in their outer s_____.

- This means elements in the same g_____ of the periodic table will have similar c_____ properties because they have the same number of e_____ in their outer s_____.
- ii) Elements in Group O (the N_____ gases) are all unreactive because their outer s_____ of electrons is f.

<u>Group 1:</u>

The alkali metals all react v_____ with water because they only have to l_____one electron.

- a) Describe the reaction of sodium with water?
- b) Write a balanced equation for this reaction?

As we go down the group the metals become more re______ because the outer e______ is further from the n______so there is a weaker a______, so less e______ is required to remove it.

Group 7 (The Halogens):

Fill in the table of their properties:

Halogen	Colour	State at room
		temperature
Fluorine		
Chlorine		
Bromine		
Iodine		
Astatine		

The	halog	ens d	all rea	act ir	n a s	imila	r way	becaus	se the	ey are	trying	to to
<u>g</u>	an	n elea	ctron	into	the	ir ou	ter s_		<u> </u> .			

As you	ı go down the grou	ip the outer s <u></u>	is further from the
n	and therefo	ore the a	is weaker. This means it
is h	to <u>g</u> _	_an electron.	

This means that a more r_____halogen will take an e_____ from the halide (n_____ ion) of a less r_____ halogen and thereby d_____it from the solution.

a) Chlorine + Potassium Bromide 🗪

b) Bromine + Potassium Iodide 🗪

The reac halogen i	tions are s r	exam a	ples of nd the h	r <u> </u>	_reaction on is o	s. Th	is is because the
e.g.	Chlorine	+	Iodide	\implies	Chloride	+	Iodine
	Cl ₂	+	2e ⁻	\implies	2Cl ⁻		
	2I ⁻			\implies	I2	+	2e ⁻
	Cl ₂	+	2I ⁻	\implies	2 <i>C</i> ⁻	+	I ₂

c) Write equations for the answers to questions a) and b)

Hydrogen Chloride is a <u>g</u>but when it dissolves in water it becomes ionised (dissociated) resulting in a solution of Hydrochloric Acid.

HCl (aq) \implies H⁺ (aq) and Cl⁻ (aq)

d) Why is hydrogen chloride acidic in water but not in methylbenzene?

<u>Oxygen:</u>

Fill in the table about the composition of the air:

Name	Percentage
	78%
	21%
	1%
	0.04%

The % of oxygen in the air can be investigated by looking at the reaction of elements such as c_____, i____and p_____.

a) Draw a diagram of this experiment?

Oxygen can be prepared from H____P___ in the presence of a catalyst.

b) Name the catalyst?

Elements can be classified according to their reactions with Oxygen. M_____ produce b_____ oxides and non-metals produce a____oxides.

a) Describe the reactions of Magnesium, Carbon and Sulphur with oxygen? Write symbol equations for the reactions.

Magnesium:

Sulphur:

Carbon Dioxide:

Carbon	Dioxide	can	be prepar	ed from	n the	reaction	between
С	C		and	Н		acid.	
a)	Write a bo	alancec	l symbol equ	uation fo	or this	reaction?	
Carbon	Dioxide	is als	o formed	when m	netal c	:	are
heated,	this ty	ype o [.]	f reaction	is kr	nown d	as T	
D							

b) Write a balanced equation for the reaction of Copper (II) Carbonate in this way.

Carbon dioxide is a relatively	d <u> g</u> as and for this reason it is
used in fe	Carbon dioxide is also soluble in
water and therefore is used t	o manufacture c <u> d </u> .
Carbon dioxide is also a g	gas and contributes to
gw	Increasing levels of Carbon

dioxide in the air may well lead to c_____change.

<u>Hydrogen:</u>

Metals react with Hydrochloric and Sulphuric Acids to produce H_____. The more reactive the metal, the more vigorous the b_____.

- a) Write an equation for the reaction between Magnesium and dilute Sulphuric acid?
- b) Describe the combustion of Hydrogen and write an equation for the reaction?

<u>Water:</u>

A_____ C____S____ is used as a chemical

test for water.

- c) What is the colour change in this chemical test?
- d) What is the physical test used to show whether or not the water is PURE?

<u>Reactivity Series:</u>

Metals can be arranged into a reactivity series based upon the following reactions:

- Reaction with other metal compounds
 (D_____).
- ii) Reaction with water.
- iii) Reaction with dilute acids.

Small pieces of four different metals were placed in identical amounts of hydrochloric acid. The results are shown below.

(a) Place the metals in order of reactivity, starting with the most reactive.

[2]

(b) The four metals used in the experiment were calcium, magnesium, iron and platinum.

Use your knowledge of these four metals to identify the metals A, B,

C & D. [3] Metal A _____ Metal B _____ Metal C _____ Metal D _____

Redox	reactions	are	reactions	that	involve	r	and
-------	-----------	-----	-----------	------	---------	---	-----

0_____

_•

R	is the g	0	f electro	ns ort	he I
of o	<u> </u>				
Oxidation is	the I	_of ele	ctrons or	the g	
of oxygen.					
An o	agent is th	erefore	e a specie	es tha	t is itself r <u></u>
and	d so takes the	e e	av	vay fro	m another
species.					
A r	agent is the	erefore	a species	that is	s itself
o	and so gives	s e	to	anothe	r species.
Carbon +	Iron 🛌	\Rightarrow	Carbon	+ Iı	ron
Monoxide	Oxide		Dioxide		
a) In reactio	n above identi [.]	fy the f	ollowing:		
• Speci	es Reduced:				

- Species Oxidised:
- Oxidising Agent:
- Reducing Agent:

Rusting is an example of a redox reaction:

- a) Under what conditions does iron rust?
- b) How does grease, oil, paint and plastic protect the iron?
- c) Why is galvanising such a good way of protecting the iron?
- d) What is sacrificial protection?

<u>Test for Cations (positive ions):</u>

<u>Flame Tests:</u>

A p_____ wire is first heated and then dipped in concentrated h_____acid. This is then dipped into the sample to be tested and placed in a b_____flame.

Positive Ion	Flame Colour
Li⁺	
Na⁺	
K⁺	
Ca ²⁺	

Tests with Sodium Hydroxide:

Positive Ion	Observation
NH₄ ⁺	
Cu ²⁺	
Fe ²⁺	
Fe ³⁺	

Test for Anions (negative ions):

Test	Anion	Observations
	Cl⁻	
Dilute nacid and s nsolution	Br⁻	
	I-	
Dilute H acid and B C solution	SO4 ²⁻	
Dilute H acid	CO3 ²⁻	

<u>Test for Gases:</u>

Gas	Test
Hydrogen	Lsplint goes out with a sp
Oxygen	Ra gsplint
Carbon Dioxide	Turns I, m
Ammonia	Turns dr_lpaper b
Chlorine	Turns damp blpaper red then w

<u>Organic Chemistry:</u>

Homologous Series:	A series of organic compounds that have similar c properties, g change in their physical properties, the same f group and the same g formula.
Hydrocarbon:	Molecules containing <mark>only</mark> H and C
Saturated:	Molecules, to which no other molecules can be added, they do not contain a C Cdbond.
Unsaturated:	Molecules that contain a C Cdbond.
General Formula:	The formula of a homologous series e.g. C_nH_{2n+2} (a) and C_nH_{2n} (a)
Isomerism:	Molecules that have the same number of each type of atom but a different s

<u>Alkanes:</u>

S_____hydrocarbons with the general formula C_nH_{2n+2}

Name	Formula	Displayed Formula
Methane		
	C2H6	
Propane		
	C4H10	
Pentane		

a) Draw the displayed formula of the isomers of Pentane:

<u>Combustion:</u>

The products of combustion of a hydrocarbon are dependent upon the supply of O______. Plentiful supply of o______ leads to C_____ combustion. The products of this reaction are C_____ D____and W_____. In a limited supply of o______the products are more varied and

Substitution:

Methane will react with b_____ in the presence of _____ light. The product of this reaction is bromomethane.

b) Draw the structure of bromomethane?

<u>Alkenes:</u>

 U_{n} hydrocarbons with the general formula C_nH_{2n}

They contain a C_____-C____d____bond.

Name	Formula	Displayed Formula
	C₂H₄	
Propene		
	C ₄ H ₈	

a) Draw the displayed formulas of isomers of C_4H_8

Addition Reactions:

C_____.

Because of the C____-C___ d____ bond, alkenes undergo addition reactions. This is where the d_____ bond breaks and the other molecule is added.

b) Draw the displayed formula of the product when ethene reacts with bromine.

Bromine water can be used as a test for <mark>alkenes</mark> or <mark>unsaturation</mark> because when it reacts it goes from y_____-o____to

<u>Ethanol:</u>

Ethanol can be manufactured by two different processes:

Name	Fermentation	Hydration of Ethene
Raw Materials	S	Ethene Steam
Reaction Conditions	У Temp:	Catalyst: Temp: Pressure:
Pros		
Cons		

Dehydration of Ethanol:

Ethanol can be dehydrated back to ethene by passing the ethene over a a ______o ____catalyst.

a) Write an equation for the dehydration of ethanol?

Physical Chemistry:

Acids, Alkalis and Salts:

Indicators are used to distinguish between acidic and alkaline solutions because they have different c______in these solutions.

a) Name three indicators used.

Indicators can also be used to show the end point in a reaction because their colour changes are s_____.

Universal Indicator contains a number of different indicators and therefore can be used to approximate the ______ of a solution. However because the changes in colour are g______ it is not used to show the end point in a reaction.

Acids are sources of Hydrogen Ions

H⁺ (aq)

Alkalis are sources of Hydroxide Ions

OH⁻ (aq)

Metal oxides and hydroxides are b_____. Soluble hydroxides are called a_____.

Hydrogen ions, H⁺(aq), make solutions a_____ and

hydroxide ions, OH⁻(aq), make solutions a_____.

The_____ scale is a measure of the acidity or alkalinity of a solution.

In n_____ reactions, hydrogen ions react with hydroxide ions to produce w_____. This reaction can

be represented by the equation:

a) Write an equation to represent this reaction.

Another product of the reaction between acids and bases are called s_____.

Reactions of Acids:

- a) Write a word equation and balanced symbol equation for the following:
 - i) Iron and Sulphuric Acid

ii) Copper Oxide and Nitric Acid

iii) Sodium Carbonate and Hydrochloric Acid

Solubility Rules

The general rules of solubility are:

i)	All common s, p and
	asalts are soluble.
ii)	All nare soluble.
iii)	Common c are soluble excepts
	C
iv)	Common s are soluble except those of
	band c
v)	Common c are <mark>insoluble</mark> except those of
	s, pand a

<u>Soluble Salts:</u>
The method to make a soluble salt depends upon the reactivity of the
mand the aused.
Salts have two parts to their name, Metal and Non-Metal.
e.g. <mark>Sodium <mark>Sulphate</mark>, <mark>Copper</mark> Chloride</mark> , Iron <mark>Nitrate</mark> .
The <mark>metal</mark> comes from the base or alkali. Whereas the <mark>non-metal</mark>
comes from the a <u>used</u> .
Hydrochloric Acid —
Nitric Acid
Sulphuric Acid
The method used to make the salt depends upon the
rof the metal.
Metals that are very ruse the Acid + Alkali method.
Metals that aremore r than H use the Acid +
Metal method.
Metals that are less r than H use the Acid +
Base method.

<u>Acid + Alkali:</u>

- 1. The alkali is added to the acid.
- 2. An i_____ can be used to determine when the reaction is complete.
- 3. The alkali should be added d_____ near to the end point.
- The salt solution can be c_____ to produce solid salts.

Acid + Alkali Salt + Water

Ammonia dissolves in water to produce an a		solution. It is
used to produce a	salts. A	salts are important
as f		

<u>Acid + Metal:</u>

The m_____ is added to the acid until there is no more 1. f_____. The excess m_____is f______. 2. The salt solution can be c______ to produce solid 3. salts. Acid + Metal Salt + Hydrogen e.g Zinc + Sulphuric 🐋 Zinc + Water Sulphate Acid <u>Acid + Base:</u> The metal o______ is added to the acid and w______. 1. The metal o______ is added until no more d______. 2. The excess metal o______is f______. 3. The salt solution can be c______ to produce solid 4. salts. Acid + Base Salt + Water Copper + Nitric >> Copper + Water e.g. Oxide Acid Nitrate

- b) Give the method and write an equation to make the following salts.
 - i) Copper Sulphate

ii) Potassium Nitrate

iii) Iron Chloride

iv) Ammonium Nitrate

Insoluble Salts:

Insoluble salts can be made by mixing appropriate solutions of ions so

that a p_____is formed. This can then be f_____,

w_____and d_____.

The solutions used are Metal Nitrate and Sodium Non-Metal.

e.g. <mark>Barium Sulphate</mark> can be made from <mark>Barium</mark> Nitrate and Sodium Sulphate solutions.

- c) Write an equation to make insoluble Lead Iodide.
- d) Write an equation to make insoluble Silver Chloride.

Precipitation can be used to remove unwanted ions from solutions, for example in treating water for d_____ or in treating e_____.

<u>Titrations:</u>

Titrations are used to calculate the concentration of a solution by reacting it precisely with a solution of known concentration.

i)	Measure out a <mark>precise</mark> volume of an alkali using a
	p
ii)	Add a few drops of an i
iii)	Fill a bwith a This will allow to add a
	varied amount of a
iv)	Add the a to the alkali until the i
	changes colour.
v)	When nearing the end point the a should be added
	<mark>drop-wise</mark> .
vi)	Record the volume of aadded.

Titration Calculations:

1. What volume of 0.100 mol/dm³ sulphuric acid reacts with 30 cm³ of 0.150 mol/dm³ sodium hydroxide?

 $2 \text{ NaOH(aq)} + \text{H}_2\text{SO}_4(aq) \rightarrow \text{Na}_2\text{SO}_4(aq) + 2 \text{ H}_2\text{O(I)}$

What volume of 0.150 mol/dm³ rubidium hydroxide reacts with
 25.0 cm³ of 0.240 mol/dm³ nitricacid?

```
RbOH(aq) + HNO_3(aq) \rightarrow RbNO_3(aq) + H_2O(I)
```

Energetics:

A reaction in which energy is transferred to the surroundings is known as an e_____ reaction. The temperature of the surroundings would i_____. A reaction in which energy is transferred from the surroundings is known as an e_____ reaction. The temperature of the surroundings would d_____.

We can measure the energy changes in a reaction by measuring the energy change of the surroundings.

$q = m \times c \times \Delta T$

- **m** = mass of the surroundings (usually water)
- c = specific heat capacity
- ΔT = temperature change of the surroundings.
 - a) In an experiment, 1.00 g of hexane (C₆H₁₄) was completely burned in air. The heat evolved raised the temperature of 200 g of water by 51.6°C. Calculate the heat evolved.

The heat evolved will be dramatically reduced due to h_____I____.

The molar enthalpy change (ΔH) is the energy change for 1 mole of a substance.

If ΔH is negative then the reaction is e_____. (i.e. heat has been evolved) If ΔH is positive then the reaction is e_____. (i.e. heat has been taken in)

 ΔH can be calculated by:

$$\Delta H = q / n$$

Where n is the number of moles of the substance reacted or produced.

In an experiment, 1.56 g of propan-1-ol ($CH_3CH_2CH_2OH$) was completely burned in air. The heat evolved raised the temperature of 250 g of water by 47°C. Calculate ΔH (NB: the sign!)

The energy change can also be calculated by using the **bond enthalpies**, this is the energy required to break 1 mole of the bonds.

- 1. Calculate the energy required to break all of the bonds in the reactants.
- 2. Calculate the energy required to break all of the bonds in the products

3. Calculate the overall energy change = Reactants - Products.
a) Calculate the energy change in this reaction. Bond energies
 are: (C-C) = 348, (C-H) = 412, (O=O) = 498, (C=O) = 743, (H-O)
 = 463 kJ/mol.

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

b) Calculate the energy change in this reaction. Bond energies are: (C=C) = 837, (C-H) = 412, (H-H) = 436, (C-H) = 412, (C-C) = 348 kJ/mol.

 $H\text{-}C{\equiv}C\text{-}H\text{+}2H_2 \rightarrow C_2H_6$

A reaction is ex_____because more energy is given out from the formation of new bonds than is required to break bonds.

A reaction is en_____because more energy is taken in to break bonds than is given out by forming new bonds.

Energy Profile Diagram:

a) Draw a similar energy profile diagram for an endothermic reaction.

Rates of Reaction:

The rate of a reaction can be monitored by looking at the change in m_____of the reaction mixture, the v_____ of a gas given off or perhaps a c_____change.

Reactions occur because particles c_____ with sufficient e_____, the minimum energy required for a reaction to occur is known as the A_____ E____. Most c_____that occur do not result in a reaction. Therefore to i______the rate of reaction you must either i_____the number of c______or i_____the e_____of the particles.

- Surface Area: I_____ surface area means that more particles can c_____ at the surface and therefore there will be more s_____ collisions resulting in an i_____ in the rate of reaction.
- Concentration: I______the concentration means there are more p______in the set volume. This means there will be more c_____and therefore there will be more s______ collisions resulting in an i_____in the rate of reaction.

Pressure: I______the pressure means there are more p______in the set volume. This means there will be more c_____and therefore there will be more s_____collisions resulting in an i_____in the rate of reaction.

Temperature: Increasing the temperature means that the particles have more e_____and are travelling f_____. This means that not only when they c______they will be more likely to react but also they will have more c_____. This results in an i_____in the rate of reaction.

 Catalyst:
 A catalyst is a substance that s_____up the rate of reaction without itself being u____up.

 It does this by providing an a______ reaction pathway with a lower A______ E____.

 Therefore more collisions are likely to be s______leading to an i______in the rate of reaction.

<u>Equilibria:</u>

Some reactions are reversible and are shown by using a \rightleftharpoons .

a) Describe the dehydration of hydrated copper (II) sulphate.

b) Describe the effect of heat on ammonium chloride.

When a reaction is in dynamic equilibrium the rate of the f_____ reaction is equal to the rate of the b_____ reaction. The concentrations of the reactants and products remain u_____.

Increasing temperature always favours the en______ reaction. If an equilibrium is ex______then an increase in temperature will favour the b______ reaction and the equilibrium will move to the l_____resulting in a lower y_____. Therefore in exothermic reactions a l_____temperature is needed to achieve a higher y_____ but l_____temperatures mean the overall rate of reaction is too s______so a compromise is often used.

Increasing pressure always favours a d_____in the number of moles of g____. You can figure this out by adding up the total number of moles of g____ on each side of the equation. High pressures are more e_____ and therefore a compromise is often used in industry.

Extraction of Metals:

The extr	raction of a metal depends upon its position in the
r	series. Those elements above Ccan be
extracted by	E and those below can be extracted by
R	• graphite anode
<u>Aluminium:</u>	purified aluminium ore dissolved in molten cryolite
Process:	E graphite cathode molten aluminium
Raw Material:	B(Aluminium O_)
Conditions:	Temperature of°C
	C(this is used to dissolve the aluminium oxide so that the process can take place at a lower t
Equations:	Cathode:
	Anode:
Comments:	The anodes have to be replaced regularly because they react with the o to produce c d
Uses:	Aluminium is used because of its low d and high s (used to make a)
	It is also a very good conductor of e and h (used to make p)
	Aluminium has a thin layer of aluminium o <u>o</u> on its s <u>and</u> therefore is resistant to c <u></u> . (used to make aluminium f <u>)</u>

<u>Iron:</u>

Conditions: Temperature of <u>°C to</u> °C

Equations: 1.

- 2.
- 3.
- 4.

Comments: The I_____ (c_____ c____) decomposes to form c_____o ____and this reacts with the acidic impurities in the ore to form s_____.

a) Write a word equation for the reaction with the acidic impurities.

b) Write a symbol equation for the reaction with the acidic impurities.

<u>Crude Oil:</u>

Crude Oil is a mixture of hydrocarbons.

The crude oil is separated into f		by a	process known as
F	D	First	the crude oil is
v	and then passed into a c		As the
v	rises the different f	_will c	at
differen	t levels.		

Name of Fraction	Use
Rg	
G	
K	
D	
FO	
B	

As the number of c_____atoms in a hydrocarbon increases:

i) The b_____p___increases.

ii) The v_____increases.

<u>Combustion:</u>

Alkanes are used as f____s. Their combustion can be c____or i____.

b) What are the products when hydrocarbons are burned in excess oxygen?

c) What are the products when a hydrocarbon is burned in a limited supply of oxygen?

d) What other pollutant can be produced by the internal combustion engine?

e) What pollutant is caused by the main impurity in fossil fuels?

The combustion of fossil fuels (including alkanes) results in the release of c_____d____into the atmosphere

C_____d ____, m____and water vapour are

referred to as <u>g_____</u>gases and that these gases may contribute to global_____.

<u>Cracking:</u>

The f_____d _____of crude oil produces more longchain hydrocarbons than can be used directly and fewer short-chain hydrocarbons. Therefore the long-chain hydrocarbons can be b______ d_____ to produce more useful, s______ hydrocarbons. This process is known as c______. C______involves heating the hydrocarbons to______°C and using a_______catalyst.

Synthetic Polymers:

Addition Polymerisation:

This is when many s_____ molecules (known as m_____) are j______together to form a l______chain known as a p______. Alkenes can be used to make p______ such as poly(ethene) and poly(propene). In these reactions, many small molecules (m______) join together to form very large molecules (p______). (c) doc b H H H H H H n = a big numberof monomers of mon

a) Draw a diagram of the polymer formed from this alkene?

Describe the uses of the following polymers:

Polymer	Use
Poly(ethene)	
Poly(propene)	
Poly(chloroethene)	

Addition polymers are difficult to dispose of because of their i
which means that they do not easily b

Condensation Polymerisation:

Some polymers such as n_____are formed by a process known as c______polymerisation. The reaction also produces a small molecule, such as w_____.

a) Write an equation to show the formation of nylon.

Industrial Manufacture of Chemicals:

<u>Haber Process:</u>

This process is	used to manufacture a
Raw Materials:	Nitrogen from a
	Hydrogen from mor cof h
Conditions:	Temperature of°C
	Pressure ofatm
	Icatalyst
Process:	The reaction mixture is passed over a bed of i catalyst. The reaction mixture is then c to I the a Any u Nitrogen and Hydrogen is r $H_2 + N_2$ $H_2 + N_2$ Reactor
Uses:	A is used in the manufacture of N acid and f
	Nitrogen is important in fas it is required by plants to aid g A and N acid react together to form A N, a fhigh in nitrogen.